NAG Toolbox for MATLAB

c02ah

1 Purpose

c02ah determines the roots of a quadratic equation with complex coefficients.

2 Syntax

3 Description

c02ah attempts to find the roots of the quadratic equation $az^2 + bz + c = 0$ (where a, b and c are complex coefficients), by carefully evaluating the 'standard' closed formula

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

It is based on the function CQDRTC from Smith 1967.

Note: it is not necessary to scale the coefficients prior to calling the function.

4 References

Smith B T 1967 ZERPOL: A zero finding algorithm for polynomials using Laguerre's method *Technical Report* Department of Computer Science, University of Toronto, Canada

5 Parameters

5.1 Compulsory Input Parameters

- 1: ar double scalar
- 2: ai double scalar

ar and ai must contain the real and imaginary parts respectively of a, the coefficient of z^2 .

- 3: **br double scalar**
- 4: **bi double scalar**

br and **bi** must contain the real and imaginary parts respectively of b, the coefficient of z.

- 5: cr double scalar
- 6: ci double scalar

cr and ci must contain the real and imaginary parts respectively of c, the constant coefficient.

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

[NP3663/21] c02ah.1

c02ah NAG Toolbox Manual

5.4 Output Parameters

1: zsm(2) - double array

The real and imaginary parts of the smallest root in magnitude are stored in $\mathbf{zsm}(1)$ and $\mathbf{zsm}(2)$ respectively.

2: zlg(2) – double array

The real and imaginary parts of the largest root in magnitude are stored in $\mathbf{zlg}(1)$ and $\mathbf{zlg}(2)$ respectively.

3: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

On entry, $(\mathbf{ar}, \mathbf{ai}) = (0,0)$. In this case, $\mathbf{zsm}(1)$ and $\mathbf{zsm}(2)$ contain the real and imaginary parts respectively of the root -c/b.

ifail = 2

On entry, $(\mathbf{ar}, \mathbf{ai}) = (0,0)$ and $(\mathbf{br}, \mathbf{bi}) = (0,0)$. In this case, $\mathbf{zsm}(1)$ contains the largest machine representable number (see x02al) and $\mathbf{zsm}(2)$ contains zero.

ifail = 3

On entry, $(\mathbf{ar}, \mathbf{ai}) = (0,0)$ and the root -c/b overflows. In this case, $\mathbf{zsm}(1)$ contains the largest machine representable number (see x02al) and $\mathbf{zsm}(2)$ contains zero.

ifail = 4

On entry, $(\mathbf{cr}, \mathbf{ci}) = (0, 0)$ and the root -b/a overflows. In this case, both $\mathbf{zsm}(1)$ and $\mathbf{zsm}(2)$ contain zero.

ifail = 5

On entry, \tilde{b} is so large that \tilde{b}^2 is indistinguishable from $\tilde{b}^2 - 4\tilde{a}\tilde{c}$ and the root -b/a overflows, where $\tilde{b} = \max(|\mathbf{br}|, |\mathbf{bi}|)$, $\tilde{a} = \max(|\mathbf{ar}|, |\mathbf{ai}|)$ and $\tilde{c} = \max(|\mathbf{cr}|, |\mathbf{ci}|)$. In this case, $\mathbf{zsm}(1)$ and $\mathbf{zsm}(2)$ contain the real and imaginary parts respectively of the root -c/b.

If **ifail** > 0 on exit, then $\mathbf{zlg}(1)$ contains the largest machine representable number (see x02al) and $\mathbf{zlg}(2)$ contains zero.

7 Accuracy

If ifail = 0 on exit, then the computed roots should be accurate to within a small multiple of the *machine* precision except when underflow (or overflow) occurs, in which case the true roots are within a small multiple of the underflow (or overflow) threshold of the machine.

8 Further Comments

None.

c02ah.2 [NP3663/21]

9 Example

```
ar = 1;
ai = 0;
br = -3;
bi = 1;
cr = 8;
ci = 1;
[zsm, zlg, ifail] = c02ah(ar, ai, br, bi, cr, ci)

zsm =
    1.0000
    2.0000
zlg =
    2.0000
-3.0000
ifail =
    0
```

[NP3663/21] c02ah.3 (last)